Warm-Up

If you solved the following from homework:

- Page 1: Section 1 (write degree)
- Page 1: Section 2 (fill in the blank info)
- Page 2: Spiral Review

Then:

- 1. Find a classmate that also completed the work above
- 2. Discuss your solutions

If you DID NOT solve the following from homework: Page 1: Section 1 (write degree) Page 1: Section 2 (fill in the blank info) Page 2: Spiral Review Then work alone or with a classmate in the same situation to solve the exercises listed above.

Polynomial Functions Roots

Today's Plan

- 1. Short lesson
- 2. Practice exercises
- 3. Exit ticket

Polynomial Function

A *polynomial function* is a function f(x) of the form:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Where n is a non-negative integer.

Vocabulary Term Coefficient Constant Term

Degree

The *degree of a term* is the sum of the exponents of all variables.

The *degree of a polynomial* is the maximum degree of its terms.

$$x^2y + x^2z + xy^2$$

The degree of the polynomial is 3.

What is the leading term?

It depends!

Roots/Zeros

A *root* of a polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a real or complex number *a* such that p(a) = 0.

1 is a root of the polynomial $p(x) = x^2 - 1$ Justification: $p(1) = 1^2 - 1 = 0$

i is a root of the polynomial $p(x) = x^2 + 1$ Justification: $p(1) = i^2 + 1 = -1 + 1 = 0$

Fundamental Theorem of Algebra

A polynomial of degree *n* has exactly *n* complex roots.

Polynomial	Degree	Roots
$p_1(x) = 5$	0	None
$p_2(x) = x - 5$	1	5
$p_3(x) = (x - 5)(x + 5)$	2	-5,5
$p_4(x) = (x^2 + 1)(x + 5)$	3	- <i>i</i> , <i>i</i> , -5
$p_5(x) = (x - 1)^2(x + 2)$	2	-1,1

Root Multiplicity

A root *a* of a polynomial p(x) has *multiplicity k* if the factor (x - a) appears *k* times in the factorization of p(x).

Polynomial	Root	Multiplicity
$p_5(x) = (x - 1)^2(x + 2)$	1	2
= (x - 1)(x - 1)(x + 2)	-2	1
$p_6(x) = x^4(x^2 + 1)^2$	0	4
= xxxx(x-i)(x-i)(x+i)(x+i)	i	2
	— <i>i</i>	2

Factoring

Find the roots of the polynomial function $p(x) = x^3 - x^2 - 6x$.

Reversibility Question

Find a polynomial with roots 5, 6, -3.

Reversibility Question

Find a polynomial with roots 0(multiplicity 2), -2, 3.

Charge

In-class:

Finish the homework handed out last week (2.2 Polynomial Functions Assignment).

Complete the Exit Ticket.

At-home:

Complete the homework assigned today on Desmos.

Delta Math assignment due on Friday, Oct 8.

Go to student.desmos.com and type in:

