
Review of the Quadratic Functions Unit

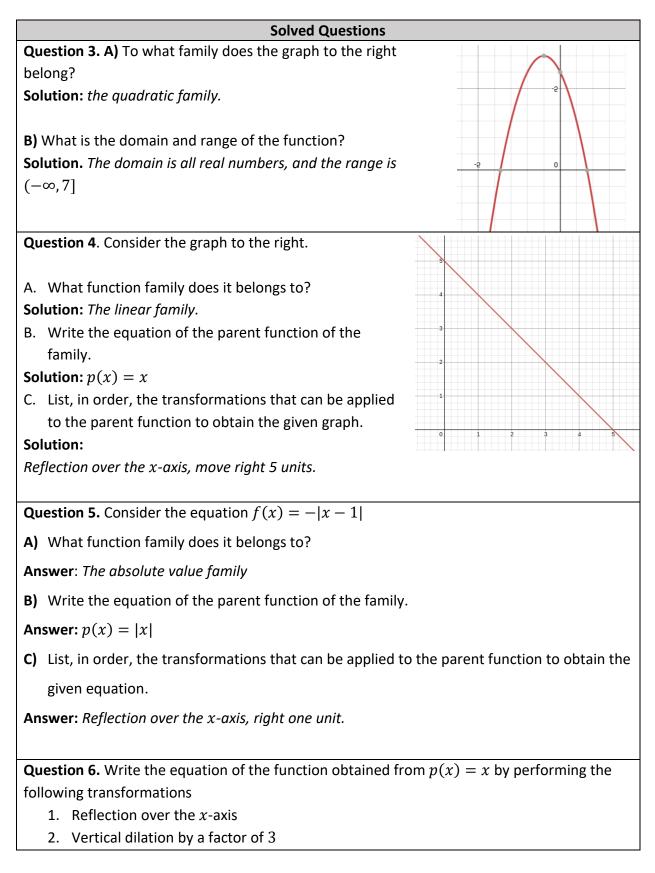
Quadratics Equations - Summative Assessment			
Торіс	Number of lessons	Questions	
Definitions and Graphing	1	2/16	
Families of Functions	2	4/16	
Factoring	3	6/16	
Quadratic Equations	2	4/16	

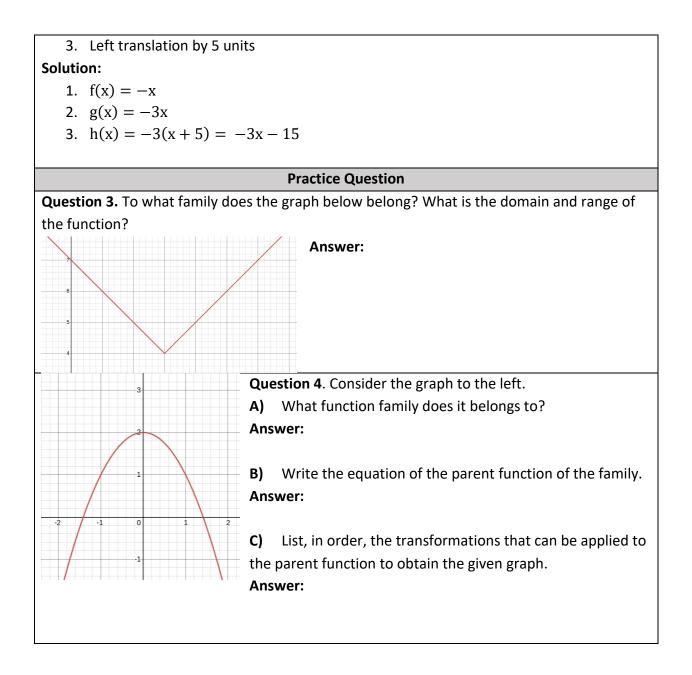
In each of the tables that follow, you will find first a set of notes to help you remember the class content, and one pairs of one solved exercise and one practice exercise.

Properties of Parabolas



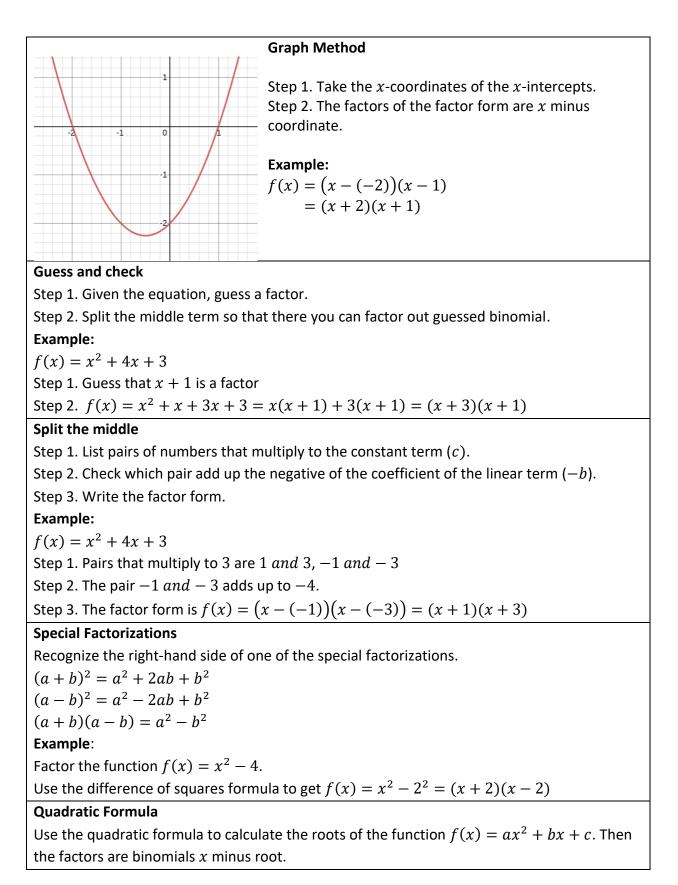
Vertex Form


	Review
The ve	rtex form of a quadratic has an equation of the form $f(x) = (x - h)^2 + k$, where
(h, k)	is the vertex of the parabola.
Proced	dure to convert from standard form to vertex form:
2. 3.	Identify the constants a (the number before x^2), b (the number before x), c (the number with no x next to it). Calculate $-\frac{b}{2a}$. Calculate $f\left(-\frac{b}{2a}\right)$ by replacing x with the number calculated in Step 2. Write the vertex form equation by replacing h with the number in Step 2 and k with
	the number in Step 3.
	Solved Question
	ion 2: Transform the equation in the standard form $f(x) = x^2 - 2x + 5$ to the vertex
form.	
Solutio	on:
Step 1	a = 1, b = -2, c = 5.
Step 2	$-\frac{b}{2a} = -\frac{-2}{2} = 1$
	$f^{2a}_{1} = 1^2 - 2 \cdot 1 + 5 = 4$
•	
Step 4	The vertex form of the function is $f(x) = (x - 1)^2 + 4$.
	Practice Question
Quest i form.	ion 2: Transform the equation in the standard form $f(x) = -x^2 - 2x + 1$ to the vertex


Function families and Transformations

	Review				
Family Name	Parent Function	Graph	Characteristics		
Constant	f(x) = 1	-4 -2	The graph is a horizontal line. Domain: all real numbers Range: one value		
Linear	f(x) = x	4	The graph is a slanted line (not horizontal, not vertical) Domain: all real numbers Range: all real numbers.		
Absolute Value	f(x) = x	-4 -2 0 2 4	The graph is V-shaped. Domain: all real numbers. Range: [0,∞)		
Quadratic	$f(x) = x^2$	-4 -2 0 2 4	The graph is U-shaped, it is called a parabola. Domain: all real numbers Range: [0,∞)		

Page 5 | 14



Question 5. Consider the equation $f(x) = (x - 1)^2 + 3$
A) What function family does it belongs to?
Answer:
B) Write the equation of the parent function of the family.Answer:
C) List, in order, the transformations that can be applied to the parent function to obtain the given equation.
Answer:
Question 6. Write the equation of the function obtained from $p(x) = x$ by performing the
following transformations
1. Move up 3 units
2. Reflection over the <i>x</i> -axis
3. Left translation by 5 units
Answer:

Factor Form

Review

- 1. Identify the constants a (the number before x^2), b (the number before x), c (the number with no x next to it).
- 2. Calculate the roots using the quadratic formula

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
Example: Factor the function $f(x) = 2x^2 + 3x - 5$
Step 1. $a = 2, b = 3, c = -5$
Step 2. The solutions are
 $\frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-5)}}{2 \cdot 2} = \frac{-3 \pm \sqrt{9 + 40}}{4} = \frac{-3 \pm 7}{4}$
The solutions are:
 $\frac{-3 - 7}{4} = -\frac{10}{4} = -\frac{5}{2}$
 $\frac{-3 + 7}{4} = -\frac{4}{4} = -1$

Practice Questions

Question 7. Factor the function $f(x) = x^2 + 8x + 15$.

Question 8. Factor the function $f(x) = x^2 - 100$.

Question 9. Factor the function $f(x) = -49x^2 + 100$.

Question 10. Factor the function $f(x) = x^2 + 5x$.

Question 11. Factor the function $f(x) = 10x^2 - 11x + 1$

Question 12. Factor the function $f(x) = x^2 + x - 6$

Quadratic Equations

Practice Problems				
The same methods used to factor a quadratic can be used to solve a quadratic equation.				
Question 13. $(x - 200)(2x - 1000) = 0$				
Question 14. $x^2 + 2x + 1 = 0$				
Question 14: $x^2 + 2x + 1 = 0$				

Question 15. $x^2 - x + 5 = 0$

Question 16. $x^2 + 4x + 3 = 0$