
A Language for Autonomous Vehicles Testing Oracles
Ana Nora Evans, Mary Lou Soffa, Sebastian Elbaum

University of Virginia

Safety Specification

Results and Conclusions

Goal: A New FrameworkEnd-to-end AV Testing

AV Software
Simulation
Software Monitor

Scenario
Description

Sources:
1. Traffic rules and regulations
2. Local driving customs
3. Human driver behavior
4. Safe/defensive driving rules
5. Formal safety models

Conflicting Goals: Safety and
Efficiency

Challenges:

1. Large number of smaller specifications

2. Either imprecise or too formal for most AV developers

3. Mostly pass/fail, can not be used in search and optimizations

4. A numerical score assigned to a an execution is useful for raking

AV solutions.

AV Specifications/Oracles

Execution Trace

Specification

Scoring Oracle

Score

Generated by a
Simulator

Program in our DSL

DSL Interpreter

Number

Scoring Functions

…Trace

Scoring Functions

Summarizing Scoring Function

Specification

Score

Liveness Specification Timeliness Specification Temporal Specification

A trace is a sequence of world
snapshots, we call trace elements.
Each trace element contains: a
timestamp, traffic signs and traffic
light information, state of the AV
and the surrounding traffic.

A scoring function calculates a
numerical score for a trace.

A summarizing scoring function
calculates the score of a trace
from the individual scores
assigned by each scoring function
to the trace.

A specification is a set of scoring functions together with a
summarizing scoring function.

DSL for AV Specifications

Event: predicate on trace
element.

Sequence: consecutive
trace elements for which
the event is true.

Condition: predicate on a
sequence.

Action: score update.

Notification: to another scoring
function.

Red/Green boxes are trace elements for which the event is
false/true.
Red/Green rectangles are sequences with false/true condition.

Speeding: Deduct one every
time the speed limit is
exceeded.

speeding = scoring_function(
event = speed > MAX_SPEED,
action = -1,
frequency = action_sum)

Only the AV’s speed is relevant for the
speeding scoring function.

Event: test if the AV speed of
the current trace element
exceeds the speed limit. Condition: not set. The function triggers

every time the event is true.

Speed 21 21.5 22 22.5 22.5 22 22.5 22 21

Score 0 0 0 -1 -2 -2 -3 -3 -3

Action and frequency: The
score is updated every time the
function triggers.

Arrival Check: If the AV reaches a fixed point on the
map, the score is one, otherwise it is zero.

arrival_test = scoring_function(
event = (x–x_dest)2 + (y-y_dest)2 < 1,
action = 1.0,
frequency = first)

Frequency: If the event is true for a trace element,
then the score is set to one and subsequent trace
elements are not checked anymore.

Lane Keeping: Every time the AV drives on the line for
more than three seconds subtract one.

lane_keep = scoring_function(
event = (road_normal > LW-TH and

road_normal < LW+TH)
or (road_normal > 2*LW-TH
and road_normal < 2*LW+TH),

condition=seq_time > 3,
action=-1, frequency=action_sum)

Event: checks if the AV is on the line.
Condition: checks if the time the AV is on the line is
longer than three seconds.
Action: For every sequence of driving on the line for
more than three seconds, deduct one.

Deceleration before collision: If the AV decelerates within half
of second for at least two seconds before a collision, then the
score is one otherwise is zero.

collisions = scoring_function(
event = collision and expiration > 0,
action = 1.0, frequency = all_sum)

deceleration = scoring_function(
event = acceleration < 0 and not collision,
condition = seq_time > 2, frequency = first,
notifications =

[(collisions, [(expiration, 0.5)])])

The deceleration scoring function checks if the AV decelerates
for at least two seconds. When the deceleration triggers, the
expiration variable of the collisions scoring functions is set to
half of second.
Every time a trace element is processed, the expiration is
decreased. If a collision is detected before the expiration
becomes negative then the collisions function triggers.

We encoded three open source
specifications in the DSL. We used the
simulator and 474 student solutions to
the Path Planning Project of Udacity’s
Self Driving Car program.

The rankings are correlated.
The specifications agree on the worst,
but not the best.

Future work:
1. Define test coverage criteria for

specifications.
2. Develop testing techniques for

specifications.
3. Static analyses to find

similarities between
specifications.

Trustworthy AVs Require
Testing the Specification!

We propose a language for
specifications and an oracle

independent of the AV
frameworks and simulators.

