Main Theorem

Let L and L' be two topologically trivial Legendrian knots in a tight contact 3-manifold. If $tb(L) = tb(L')$ and $r(L) = r(L')$ then L and L' are Legendrian isotopic.
Proof Strategy

Let \(L \) be a Legendrian knot bounding an embedded disk \(D \).
1. Perturb the foliation
2. Build a tree
3. Define a front projection and a foliation
4. Modify the tree

Catalog of Wavefronts

- \(r=-s < 0, \ tb = -(2t+1+s) \)
Catalog of Wavefronts

• \(r = s > 0, \ tb = -(2t+1+s) \)
 – Reverse orientations in the previous slide
• \(r = 0, \ tb = -(2t+1) \)

Step1: Perturb the foliation

Goal: Given a spanning disk \(D \) of \(L \), perform a \(C^0 \)-small perturbation of \(D \) to obtain a spanning disk \(D' \) of \(L \) with foliation in elliptic form.
1. Just \(h^+ \) and \(e^- \) on boundary
2. Just \(h^+ \) and \(e^- \) on boundary and just \(e^+ \) and \(h^- \) on interior
3. Mostly \(h^+ \) and \(h^- \) on boundary, just \(e^+ \) and \(e^- \) on interior
Elliptic Foliation

- Signs of boundary singularities alternate
- Boundary singularities connect only with their direct neighbors on the boundary and interior singularities
- All interior singularities are elliptic
- Interior singularities connect to at least two boundary hyperbolic singularities
Just h+ and e- on boundary

• If $tb(L) = t$ then there is a C^0-small perturbation of D such that there are exactly $2t$ singularities on the boundary and they have alternating signs.
• Elliptic-hyperbolic conversion

Just h- and e+ on interior

• Destroy hyperbolic-hyperbolic connections
• Eliminate negative elliptic singularities
• Eliminate positive hyperbolic singularities
Just e- and e+ on interior (1)

Just e- and e+ on interior (2)
Just e- and e+ on interior (3)

Just e- and e+ on interior (4)
Step 2: Build a Tree

- Skeleton of the foliation
 - Vertices - interior elliptic points
 - Edges – representative arcs
- Extended skeleton of the foliation
 - New vertices – elliptic boundary points
 - New edges – representative arcs
- Signed trees
- Have an acceptable planar embedding
Build an wavefront

- Choose disjoint neighborhoods of vertices
- Leftmost vertex

- End vertex

- Otherwise – replace the subtree to the right by a reflection of it in the horizontal axis

Recap

- Start with Legendrian knot \(L \) spanned by the embedded disk \(D \)
- Perturb \(D \) to have an elliptic foliation
- Get an embedded Legendrian tree \(T \) (extended skeleton)
- Given a planar embedding of \(T \) build a front projection \(W_T \)

Claim: The lift of \(W_T \) bounds an embedded disk whose foliation is elliptic and diffeomorphic to the elliptic foliation of \(D \).
Forget about L (1)

Suppose Legendrian knots L and L' bound D and D' with diffeomorphic characteristic foliations in elliptic form. Then L and L' are Legendrian isotopic.

Convert the elliptic form spanning disk to exceptional form spanning disk

Forget about L (2)

Isotopy supported in the complement of small neighborhood of end vertices.
Forget about L (3)

Use Elliptic Pivot Lemma to extend the isotopy to the entire disk.

We can assume that in a neighborhood of the elliptic point we can choose cylindrical coordinates (ρ, ϕ, z) and the contact form is $dz + \rho^2 d\phi$. Let L_c be a piecewise-smooth Legendrian curve in the horizontal plane consisting of two rays $\phi = 0$ and $\phi = c$.

For any $\epsilon > 0$ there exists a Legendrian isotopy \hat{L}_c, $c \in (0, \pi]$ such that $\hat{L}_\pi = L_\pi$ and for all $c \in (0, \pi]$ the curve \hat{L}_c coincides with L_c outside of the ϵ-neighborhood of the origin.

Step 4: Modify the Tree
Step 4: Modify the Tree